
Quantifying Speech Rhythm
Abnormalities in the Dysarthrias

Purpose: In this study, the authors examined whether rhythm metrics capable
of distinguishing languages with high and low temporal stress contrast also can
distinguish among control and dysarthric speakers of American English with
perceptually distinct rhythm patterns.
Methods: Acoustic measures of vocalic and consonantal segment durations were
obtained for speech samples from 55 speakers across 5 groups (hypokinetic,
hyperkinetic, flaccid-spastic, ataxic dysarthrias, and controls). Segment durations
were used to calculate standard and new rhythm metrics. Discriminant function
analyses (DFAs) were used to determine which sets of predictor variables (rhythm
metrics) best discriminated between groups (control vs. dysarthrias; and among the
4 dysarthrias). A cross-validation method was used to test the robustness of each
original DFA.
Results: The majority of classification functions were more than 80% successful in
classifying speakers into their appropriate group.Newmetrics that combined successive
vocalic and consonantal segments emerged as important predictor variables. DFAs
pitting each dysarthria group against the combined others resulted in unique
constellations of predictor variables that yielded high levels of classification accuracy.
Conclusions: This study confirms the ability of rhythm metrics to distinguish control
speech from dysarthrias and to discriminate dysarthria subtypes. Rhythm metrics
show promise for use as a rational and objective clinical tool.
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A consensus view about what constitutes speech rhythm is singu-
larly lacking. Applied to the characterization of different languages,
rhythm has been used to refer to the perceptually distinctive al-

ternation of stressed and unstressed syllables—what we may qualify as
contrastive rhythm. Although multiple acoustic factors are likely to con-
tribute to the perception of differences in contrastive rhythm, much work
has focused on the particular role of timing. For example, it has been
claimed that Spanish sounds as though successive syllables have similar
durations, whether stressed or unstressed (“syllable-timed” or “machine-
gun rhythm”), whereas English is perceived as having a high durational
contrast between stressed and unstressed syllables (“stress-timed” or
“Morse code rhythm”; Lloyd James, 1940; Pike, 1945).

The perception of rhythmic differences between and within languages
may be seen as arising both from constraints imposed on the production of
the syllable stream by the phonological properties of the languages and by
the articulatory implementation of these constraints. Following Dauer
(1983),most recent research on speech rhythmhas focused on the former—
in particular, on cross-linguistic differences in syllable structures. For ex-
ample, Romance languages such as French, Italian, and Spanish aremade
up predominantly of open (CV) syllables, whereas Germanic languages
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such as Dutch, English, and German tend to have more
consonant clusters (CCVC, CCVCC, CCCVC, etc.), par-
ticularly in stressed syllables. In addition, unstressed
vowels inGermanic languagesare typically reduced forms,
much shorter than stressed vowels, whereas Romance
languages show relatively minimal reduction and short-
ening of unstressed vowels (although this is subject to a
great degree of variationwithin and between languages).
Thus, the greater temporal discrepancy between stressed
and unstressed syllables in Germanic languages gives
rise to the perceptual rhythmic contrast.

Rhythm abnormalities are common in the dysar-
thrias. However, rather than arising from phonological
constraints, it is at the level of articulatory implemen-
tation that motor disorders have their impact on the
emergent flow of the syllable stream and on the per-
ceived rhythm of speech. Darley, Aronson, and Brown
(1969) applied terms such as excess and equal stress,
reduced stress, short rushes of speech, and prolonged seg-
ments, among others, to capture the perceptual experi-
ence of rhythmic disturbance. Moreover, they suggested
that recognizing the pattern of rhythmic disturbance as-
sists in differential diagnosis—that is, the nature of the
underlying pathophysiology can give rise to similar sound-
ing rhythm abnormalities within an etiology group. For
example, hypokinetic dysarthria of Parkinson’s disease
(PD) can sound like “rapid fire” with short rushes of
speech; hyperkinetic dysarthria of Huntington’s chorea
can be wildly irregular and unpredictable in its rhythm;
mixed flaccid-spastic dysarthria of amyotrophic lateral
sclerosis (ALS) can have an equal and even rhythm,with
excessive sound prolongations.

Because of this reported perceptual distinctiveness,
quantification of rhythmic patterns should be a produc-
tive means of distinguishing among the dysarthrias. To
our knowledge, however, few such studies have been pub-
lished. Indeed, even attempts to acoustically characterize
the disordered rhythm within single dysarthria types
have met with limited success (Kent & Kim, 2003). The
most frequently studied disordered rhythm pattern is
that of ataxic dysarthria, with its perceptually even,
syllable-by-syllable “scanning” character. Like the orig-
inal studies that failed to find syllabic isochrony in Span-
ish (Borzone de Manrique & Signorini, 1983) and in
French (Wenk &Wiolland, 1982), syllabic isochrony was
not found to underlie the perception of scanning speech
in either ataxic German (Ackermann & Hertrich, 1994)
or ataxic American English (Kent, Kent, Rosenbek,
Vorperian, & Weismer, 1997). However, other metrics,
particularly those that incorporate vowel duration mea-
sures, have shown evidence for a tendency toward more
regular vowel durations in ataxic dysarthria than in
healthy speakers (Hartelius, Runmarker, & Andersen,
2000; Henrich, Lowit, Schalling, & Mennen, 2006; Kent

et al., 1997; Lowit-Leuschel & Docherty, 2001; Schalling
& Hartelius, 2004).

Conceivably, being able to quantify rhythmic differ-
ences in an objective and reliable way would facilitate
the differential diagnosis of the dysarthrias and perhaps
provide away to track speechprogresswith recovery and
treatment. Furthermore, it is likely that not all patterns
of rhythmdisturbance are equally detrimental to intelli-
gibility; rather, some rhythmic disordersmay provemore
problematic to the listener than others to the extent that
they impede the successful application of cognitive–
perceptual strategies for speech processing, such as the
utilization of cues to segmentation of speech into dis-
crete words (Liss, Spitzer, Caviness, Adler, & Edwards,
1998, 2000; Liss, Spitzer, Caviness, & Adler, 2002). This
is important to establish, both for advancing our general
understanding of the role of rhythm in speech perception
and for determiningwhich patterns of rhythmdisturbance
should be a target for remediation in clinical practice.

A number of duration-basedmetrics designed to cap-
ture differences in speech rhythm between and within
languages have recently been developed (Dellwo, 2006;
Low, Grabe, & Nolan, 2000; Ramus, Nespor, & Mehler,
1999), all derived from an acoustically based segmenta-
tion of the speech signal into vocalic and consonantal (i.e.,
intervocalic) intervals. No account is taken of syllabic or
higher-level prosodic structure, so that all the consonants
between successive vowels are included within the same
consonantal interval.

Ramus et al. (1999) derived standard deviations of
vocalic and consonantal interval durations (DVand DC,
respectively) and found that thesemetrics, togetherwith
%V—the proportion of total utterance durationmade up
of vowels rather than consonants—were effective in dif-
ferentiating languages such as Dutch and English from
languages such as French and Spanish that had pre-
viously been held to be rhythmically distinct.

Several studies have shown that scores for the stan-
dard deviation metrics (DV, DC) are inversely propor-
tional to speech rate (Barry, Andreeva, Russo, Dimitrova,
& Kostadinova, 2003; Dellwo & Wagner, 2003; White &
Mattys, 2007a),whichmakes comparison between speak-
ers problematic. Ramus (2002) proposed a simple rate
normalization procedure, dividing the standard devia-
tion of interval duration by the mean. This was imple-
mented for consonantal intervals by Dellwo (2006) and
was applied to both vocalic and consonantal intervals by
White and Mattys (2007a), who found that normalized
standard deviation metrics (VarcoV for vowels, VarcoC
for consonants)were indeed robust to variation in speech
rate.

Developed in parallel with standard deviation mea-
sures, pairwise variability indices (PVIs) also derive from
vocalic and consonantal interval durations.Here, however,
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there is an attempt to capture the syntagmatic nature of
rhythm by summing differences between successive in-
tervals on the basis that a high temporal stress contrast
language such as English will tend to havemuch greater
durational differences between successive syllables than
a language such as Spanish. As for VarcoV, the PVI for
vowels is rate-normalized (nPVI-V), whereas the PVI for
consonants is not (rPVI-C; see, e.g., Grabe & Low, 2002,
for a full account of these metrics).

White and Mattys (2007a, 2007b) compared all of
thesemetrics and found that VarcoVand%Vwere (a) the
most discriminative between languages and between va-
rieties of English held to be rhythmically distinct, (b) the
most informative about the influence of first language
on second language rhythm, and (c) the most robust to
variation in speech rate. Scores for VarcoV and nPVI-V,
both rate-normalized metrics of vocalic interval varia-
tion, were highly correlated, but the former (a globally
normalized metric) was somewhat more discriminative
than the latter (a locally normalized metric).

All of the above metrics are based on a division of
speech into vocalic and consonantal intervals, fromwhich
separate measures of variation are derived. The primary
rationale for this is that phonotactic constraints on con-
sonant clustering may vary between languages inde-
pendently of the degree of vowel reduction/shortening.
Thus, for example, Catalan, like Spanish, has minimal
consonant clusters but, like English, Catalan signifi-
cantly reduces and shortens unstressed vowels; in con-
trast, Polish has complex consonant clusters but little
vowel reduction.

Thisphonologicalmotivation fordistinguishingvocalic
and consonantal intervals does not apply to dysarthric
studies, where rhythmic production is affected instead
by articulatory constraints. Furthermore, as discussed
previously, theperceptual experienceof dysarthric rhythm
is generally described as relating to the production of suc-
cessive syllables. Therefore, in this studywealso employed
three new rhythm metrics, all based on the duration of
successive combined vocalic and consonantal intervals,
as an approximation to syllable duration: (a) VarcoVC,
the normalized standard deviation; (b) nPVI-VC, the
normalized pairwise variability index; and (c) rPVI-VC,
the raw (i.e., non-rate-normalized) PVI. Some previous
studies have utilized different composite metrics (e.g.,
Barry et al., 2003; Gut, 2003).We chose not to use pure
syllable durations, as in Gut (2003), in order to preserve
the acoustic nature of the metrics and to avoid imposing
phonological constraints such as syllabification rules on
the speech string. We combined each vocalic interval
with the subsequent consonantal interval (rather than
vice versa, as in Barry et al., 2003), on the basis that
phonological theory and psychological research indicate
that it is the nature of the syllable rhyme (the vocalic

nucleus plus consonantal coda) that gives rise to the per-
ception of syllable weight.

In summary, we utilized both metrics based on sep-
arate vocalic and consonantal intervals and newmetrics
basedon the combinedvowel+ consonant interval todeter-
mine the extent to which they are useful in distinguishing
dysarthric speech from that produced by neurologically
healthy control speakers as well as distinguishing among
four dysarthria subtypes: ataxic, hypokinetic, hyper-
kinetic, andmixed flaccid-spastic. Specifically, will rhythm
metrics capable of distinguishing languages with high
and low temporal stress contrast also distinguish among
dysarthric speakers of English with perceptually distinct
rhythmpatterns, and if so,whichmetrics best succeed in
classifying speakers into their respective categories?

Method
Speakers

Fifty-five speakers selected from a pool for a larger
study provided speech samples that were analyzed for
the current study: Twelve with a diagnosis of ataxic dys-
arthria secondary to various neurodegenerative diseases
(Ataxic), 9 with hypokinetic dysarthria secondary to idio-
pathic PD, 12 with hyperkinetic dysarthria secondary to
Huntington’s disease (HD), 10with amixed spastic-flaccid
dysarthria secondary to amyotrophic lateral sclerosis
(ALS), and 12 neurologically healthy speakers (Control).1

Speaker age, gender, and speech descriptions are pro-
vided in Table 1. The speakers with dysarthria were
selected because their speech deficits were of at least
moderate severity (as per intelligibility measures con-
ducted for the larger investigation) and because their
perceived symptoms coincidedwith the cardinal speech
features associated with the corresponding speech diag-
nosis (see Table 1). The presence of the cardinal speech
featureswas established as part of the research protocol,
which involved independent perceptual assessment by
at least two certified speech-language pathologists.

Speech Stimuli
All speech stimuli were recorded as part of the larger

investigation and were obtained within one session (on a
speaker-by-speaker basis). Participants were fitted with
a head-mounted microphone (Plantronics DSP-100),
seated in a sound-attenuating booth, and read stimuli
from visual prompts on a computer screen. Recordings
were made using a custom script in TF32 (Milenkovic,

1For convenience, the group codes (PD, HD, ALS, and Ataxic) are based on
the associated disease process. It should be recognized, however, that the
group membership is based foremost on the speech diagnosis (hypokinetic,
hyperkinetic, mixed flaccid-spastic, or ataxic dysarthria).
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2004; 16-bit, 44 kHz) and were saved directly to disc for
subsequent editing using commercially available soft-
ware (SoundForge; Sony Corporation, Palo Alto, CA) to
remove any noise or extraneous articulations before or
after the target utterances. The speakers read 80 short
phrases followed by five full sentences. Speakers were
encouraged to produce the speech in their “normal, con-
versational voice.”

The five sentences (Set 1) were adapted by White
andMattys (2007a) from a larger set (Nazzi, Bertoncini,
&Mehler, 1998). The use of these sentences enabled the
direct comparison of data from the present study with
previously published work on English (White &Mattys,
2007a, 2007b). The sentences, consisting of 9–12 words
(15–17 syllables), were constructed to exclude the ap-
proximants / l /, /r/, /w/, and / j / due to the difficulty of dis-
tinguishing these segments from preceding or following
vowels on visual waveforms and spectrograms displays.
The full set of sentences is listed in Appendix A.

As a source of comparison to the Set 1 sentences, we
also collected rhythm metrics on the 80 phrases (Set 2),
which were developed for the larger study of intelligibil-
ity and lexical boundary errors in dysarthric speech (see
AppendixA). In contrast toSet 1 sentences, these phrases
were designed to be producedwith some rhythmic regular-
ity, either trochaic or iambic stress patterns. The phrases
all contained six syllables andwere composed of three to
five mono- and disyllabic words (based on Liss et al.,
1998). The phrases alternated strong (S) and weak (W)
syllables (40 each, SW and WS), where strong syllables
were defined as those carrying lexical stress in citation
form. The occurrence of approximants was not controlled
in this set of phrases; however, as seen in the paragraphs
that follow, the reliability of the derived metrics was
highly acceptable. Thus, Set 2 served as a validation set
for findings derived from the Set 1 sentences that were
developed for previous studies of speech rhythm.

Further, not all of the speakers provided both Set 1
and Set 2 speech material, as the present study was
initiated after the start of the larger investigation. Set 1
included measures of the five sentences produced by
34 dysarthric and 9 control speakers. Set 2 measure-
ments were conducted on four sets of 80 phrases, one for
each dysarthria type consisting of a subset of phrases
from each of the 40 dysarthric speakers2 as well as on a
comparable set of phrases produced by 5 control speak-
ers. All participants in the Ataxic and ALS groups pro-
vided both sets of speech material, but the participant
overlap between Sets 1 and 2 was 89% for the PD group,
67% for the HD group, and 42% for the control group.
Thus, in addition to being much shorter and having dif-
ferent metrical structure, Set 2 also provided an oppor-
tunity to evaluate Set 1 results on a somewhat different
constellation of speakers.

Temporal Measurements
All speech samples were analyzed using Praat

(Boersma &Weenik, 2006) and TF32 (Milenkovic, 2004)
software. For calculation of the rhythm metrics, CVand
VC boundaries were identified and labeled by the fourth
and sixth authors (KL and SS, respectively) by visual in-
spection of speech waveforms and spectrograms accord-
ing to standard segmentation criteria (Peterson&Lehiste,
1960), with labels placed at the point of zero crossing on
the waveform. The primary indicator of a VC boundary
was the end of a pitch period preceding a break in the
formant structure, with a corresponding drop in wave-
form amplitude. Vowel offset boundary labels were further
placed based on a change in the shape of the successive

2For the purpose of the larger investigation,weselected a subset of 6–8phrases
from each speaker to construct a full set of 80 for each dysarthria group.
Phrases were selected based on the presence of cardinal features and a
moderate-to-severe intelligibility deficit level.

Table 1. Speech features by dysarthria type, gender of speaker, and age breakdown.

Speaker group Cardinal perceptual symptoms present, to varying degrees, in all speakers with dysarthria Gender Age range M

ALS (N = 10) Prolonged syllables; slow articulation rate, imprecise articulation; hypernasality; strained
strangled vocal quality.

F = 6 46–86
M = 4 X = 64

Ataxic (N = 12) “Scanning” speech; imprecise articulation with irregular articulatory breakdown; irregular pitch
and loudness changes.

F = 6 46–87
M = 6 X = 65

PD (N = 8) Rapid articulation rate; rushes of speech; imprecise articulation; monopitch; reduced loudness;
breathy voice.

F = 2 54–81
M = 6 X = 68

HD (N = 12) Irregular pitch and loudness changes; irregular rate changes across syllable strings.
F = 6 37–80
M = 6 X = 55

Control (N = 12) n/a
F = 6 21–65
M = 6 X = 33

Note. ALS = amyotrophic lateral sclerosis; F = female; M = male; X = mean age; PD = Parkinson’s disease; HD = Huntington’s disease; n/a = not
applicable.
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pitch periods, the onset of visible frication (fricatives), and
the onset of nasal formant structure combined with wave-
form amplitudeminima (nasals). CV boundaries were pri-
marily determined as beginning at the start of the pitch
period coinciding with the onset of regular formant struc-
ture, thus aspiration following stop consonant release was
included with the consonant interval; the amplitude,
shape, and lack of frication of successive pitch periods
was also a guide. Following White and Mattys (2007a),
vocalic intervalswere identified andmeasured onlywhen
there was visible evidence of a voiced vowel: Devoiced
vowels and syllabified consonants were included in the
adjacent consonant interval.

Vocalic and consonant interval durations were ex-
tracted using a custom Praat script on the boundary la-
bel files. Some dysarthric speakers, particularly those
in the ALS group, produced numerous pauses for in-
halation on the longer sentences of Set 1. Following
previous procedure (see White & Mattys, 2007a), these
silent pauses were excluded. The durations of succes-
sive vowels or consonants were summed to form one in-
terval duration, both when immediately adjacent and
when separated by a pause. This standard procedure
maintained equality of the numbers of vocalic and con-
sonantal intervals while removing the need for linguis-
tic judgments about prosodic constituency and pre-final
lengthening in the calculation of what are intended to be
fundamentally acoustic metrics (see Grabe & Low, 2002;
Ramus et al., 1999). Phrase-initial consonants, where
present, were excluded from the analysis to maintain
consistency across phrases.

Reliability
To determine intra- and inter-rater reliability of the

rhythm metrics, all Set 1 and Set 2 speech tokens pro-
ducedby two randomly chosenspeakers fromeachspeaker
group were re-measured by same and different judges
using Praat. The vocalic and consonantal intervals were
re-labeled, and the durations of eachwere compared, us-
ing Cronbach’s alpha, to the originally obtainedmetrics.
Intra- and inter-rater reliability results are presented in
Table 2 for both sets of speech material and for all five
speaker groups. For intra-rater reliability, Cronbach’s
alpha scores ranged from .956 to .986; inter-rater scores
ranged from .915 to .991. Both sets of scoreswere deemed
acceptable (they were not systematically poorer for any
given dysarthric group, either).

Metrics
Table 3 contains a list of all of the variables entered

into the statistical analyses. The first 10 variables in
this table are the rhythm metrics, as described in the

introduction. Inaddition, articulation ratewas calculated
as syllables per second, based on the actual time partic-
ipants took to utter the syllables of the target phrase or
sentence, excluding pauses and dysfluencies.

Analysis
The primary goal of data analysis was to identify

whethermetrics of speech rhythm could robustly distin-
guish speakers with dysarthria from healthy control
speakers and, further, the extent to which these metrics
could distinguish among the different forms of dysarthria.
Toward this end, a series of stepwise discriminant func-
tion analyses (DFAs) was undertaken using SPSS (Ver-
sion 15.0). DFA is an ideal tool for the present purpose
because it is known to be effective in determining which
set of continuousvariables (e.g., rhythmmetrics) best dis-
criminate between naturally occurring groups (e.g., dys-
arthrias), providing a quantitative composite index of
group membership for each observation (e.g., speakers).
At each stage of the stepwise (forward) DFA, the vari-
able that minimized Wilks’s lambda was entered into
theDFA, provided itsF statisticwas significant (p< .05).
At any point during the analysis, variables were re-
moved from the DFA if they were found to be no longer
significant (p > .10) when a new variable was added.

Canonical functions, representing linear combina-
tions of the selected (i.e., most powerful) predictor vari-
ables, were constructed by the DFA and were used to
create classification rules for groupmembership. The ac-
curacy with which these rules classify the members of
the group is expressed as a percentage. Because the clas-
sification rules are, in essence, tailored to the specific
data set, it is necessary to invoke amore stringent test to
assess reliability of the original classification results.
Her, we employed cross-validation (also called the “leave-
one-outmethod”). By thismethod, theDFAconstructs the
classification rules using all but one of the speakers. The
excluded speaker is then classified based on the func-
tions derived from all other speakers. This is repeated
for all speakers, and the resulting classification accuracy,
which is usually lower than the original classification

Table 2. Interval measurement intra- and inter-rater reliability.

Dysarthria
type

Set 1 Set 2

Intra-rater
(a)

Inter-rater
(a)

Intra-rater
(a)

Inter-rater
(a)

Ataxic .980 .977 .977 .969
ALS .979 .982 .982 .981
HD .986 .964 .972 .972
PD .976 .950 .977 .991
Control .968 .982 .956 .915

1338 Journal of Speech, Language, and Hearing Research • Vol. 52 • 1334–1352 • October 2009



accuracy, provides an index of robustness of the orig-
inal DFA results.

Three analyses were conducted on Set 1, and the
results from each were applied to Set 2 for verification
(in a nonstepwise DFA). Analysis 1 focused on seven pre-
viously used rhythmmetrics:DV,DC,%V,VarcoV, VarcoC,
nPVI-V, and rPVI-C. In Analysis 2, the newly defined
composite metrics—VarcoVC, nPVI-VC, and rPVI-VC—
were included with the seven “standard”metrics used in
Analysis 1. Finally, Analysis 3 included all of the pre-
vious metrics plus articulation rate. Because articula-
tion rate was, as expected, highly correlated with many
rhythm metrics, it was not included in the first two
analyses to achieve an independent assessment of the
other predictor variables. Stepwise DFA is sensitive to
multicollinearity, so the analysis preferentially selects
only one of the highly correlated metrics as a variable
for the classification function3 (correlation coefficients
are provided in Appendixes B and C for reference).

Results

One-Way Analyses of Variance
(ANOVAs)

To determine if the metrics demonstrated signifi-
cant group differences, a series of one-way ANOVAs was
conducted. All of themetrics established significant group
differences (p < .01). To ensure that the group differences

were not simply due to a broad contrast with the control
speakers, another set of ANOVAs was completed for the
dysarthric speaker groups only. All metrics were signifi-
cantly differentacross groups (p< .05; seeTable4; see also
AppendixD for eigenvalues). On the basis of these results,
all variables were considered in their respective stepwise
DFAs. Mean values and standard error of measurement
for eachvariable per speakergroupare reported inTable5.

Stepwise Discriminant Function Analyses:
Overall Data
Analysis 1

The following metrics were input into the stepwise
DFA for Set 1: DV, DC, %V, VarcoV, VarcoC, nPVI-V, and
rPVI-C. This DFA identified four of these seven vari-
ables as being most important for maximizing the dis-
tances among group distributions, and these were entered
into the classification function as follows, in order of the
most to least important: VarcoV, DV, VarcoC, and %V. A
total of four canonical functions, which represent linear
combinations of the entered variables, were constructed.
The classification function derived from the DFA accu-
rately classified 79%of the speakers into their respective
speaker groups (74% with the cross-validation method).

The four predictor variables identified for Set 1 served
as input variables for the (nonstepwise) DFA on Set 2
(VarcoV, DV, VarcoC, and %V). The classification rules
based on these variables resulted in correct classification
of 82% of the speakers (73% with the cross-validation
method; see Table 6 for summary of correct and incorrect
classifications for Analysis 1).

Thus, the results of this first DFA demonstrate the
ability of established rhythmmetrics todistinguishamong
speaker groups. The predictor variables identified in the

3Note that because of DFA’s sensitivity to collinearity, the set of selected
variables is not necessarily the only set that will result in high classification
accuracy.

Table 3. Definitions of rhythm metrics and articulation rate measure derived for all speech materials.

Measure Description

DV Standard deviation of vocalic intervals.
DC Standard deviation of consonantal intervals.
%V Percent of utterance duration composed of vocalic intervals.
VarcoV Standard deviation of vocalic intervals divided by mean vocalic duration (× 100).
VarcoC Standard deviation of consonantal intervals divided by mean consonantal duration (× 100).
VarcoVC Standard deviation of vocalic + consonantal intervals divided by mean vocalic + consonantal duration (× 100).
nPVI-V Normalized pairwise variability index for vocalic intervals. Mean of the differences between successive vocalic intervals

divided by their sum (× 100).
rPVI-C Pairwise variability index for consonantal intervals. Mean of the differences between successive consonantal intervals.
nPVI-VC Normalized pairwise variability index for vocalic + consonantal intervals. Mean of the differences between successive

vocalic + consonantal intervals divided by their sum (× 100).
rPVI-VC Pairwise variability index for vocalic and consonantal intervals. Mean of the differences between successive vocalic

and consonantal intervals.
Articulation rate Number of (orthographic) syllables produced per second, excluding pauses.

Note. For full details of pairwise variability index (PVI) calculations, see Grabe and Low (2002).
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stepwise analysis also were successful for high classifi-
cation accuracy with Set 2, showing the extent to which
these variables are robust on a very different type of
speech material and with a slightly different constel-
lation of speakers. Thus, the combination of VarcoV, DV,
VarcoC, and%Vis capable of separating the distributions

among the five speaker groups for this speechmaterial as
well as generalizing to a new set. It is of note that this set
of metrics includes VarcoV and %V, found by White and
Mattys (2007a, 2007b) to be the most discriminative for
rhythmically distinct languages and robust to articula-
tion rate variation.

Table 5. Mean values by speaker group per variable (metric).

Variable

Speaker group

PD M (SE) HD M (SE) ALS M (SE) Ataxic M (SE) Control M (SE)

Set 1

DV 48.19 (2.89) 73.55 (11.98) 75.49 (3.73) 73.43 (3.00) 44.57 (1.10)
DC 55.33 (3.24) 127.33 (22.27) 108.50 (11.07) 95.82 (4.50) 55.77 (1.26)
%V 46.31 (1.32) 45.83 (2.18) 51.82 (1.53) 45.87 (0.95) 41.48 (0.53)
nPVI-V 59.41 (2.21) 56.68 (3.08) 42.57 (2.09) 54.50 (2.01) 66.57 (1.33)
rPVI-C 63.89 (3.56) 144.77 (26.67) 126.38 (11.80) 109.17 (4.70) 65.42 (1.85)
VarcoV 50.49 (1.31) 48.85 (4.23) 34.85 (1.48) 44.11 (1.55) 55.59 (0.98)
VarcoC 49.75 (1.95) 68.11 (4.86) 51.09 (2.55) 48.38 (1.85) 48.84 (1.38)
rPVI-VC 78.48 (4.78) 172.51 (32.03) 141.80 (12.29) 132.59 (6.10) 74.27 (2.53)
nPVI-VC 37.98 (1.35) 47.53 (3.32) 32.02 (1.67) 35.18 (1.17) 38.00 (0.97)
VarcoVC 32.42 (2.76) 45.42 (3.27) 28.94 (1.50) 32.06 (1.28) 33.14 (0.93)
Artic. rate 4.98 (0.20) 3.28 (0.36) 2.45 (0.16) 2.80 (0.11) 5.20 (0.11)

Set 2

DV 43.88 (2.76) 78.62 (8.69) 80.86 (5.85) 77.47 (6.33) 51.34 (3.96)
DC 53.26 (3.94) 104.45 (8.25) 100.65 (7.35) 92.36 (5.8) 61.12 (2.0)
%V 47.62 (1.81) 46.77 (1.77) 53.07 (1.84) 45.59 (1.27) 38.41 (1.65)
nPVI-V 58.12 (2.42) 57.42 (4.07) 39.27 (2.01) 54.87 (3.89) 76.08 (4.56)
rPVI-C 62.13 (4.34) 115.72 (9.53) 115.52 (9.68) 102.54 (7.68) 68.51 (3.11)
VarcoV 44.40 (1.81) 46.14 (3.05) 31.75 (1.33) 40.30 (1.76) 55.50 (3.13)
VarcoC 47.44 (1.35) 52.63 (2.43) 44.88 (1.73) 40.34 (1.3) 40.98 (1.85)
rPVI-VC 81.93 (4.97) 160.25 (15.3) 147.13 (11.3) 152.50 (11.38) 100.78 (5.2)
nPVI-VC 39.47 (2.16) 42.56 (2.47) 30.40 (1.09) 36.23 (1.34) 41.70 (2.09)
VarcoVC 33.57 (1.38) 37.74 (2.07) 26.03 (.9) 30.14 (1.4) 34.52 (1.34)
Artic. rate 4.85 (.15) 2.93 (0.11) 2.16 (0.13) 2.48 (0.11) 4.23 (.25)

Table 4. Results of one-way analyses of variance (ANOVAs) testing equality of means for set 1 and set 2, and for all
speakers and dysarthria-only.

Variable
Set 1: All speakers

F (4, 38) p
Dysarthria only

F (3, 30) p
Set 2: All speakers

F (4, 40) p
Dysarthria only

F (3, 35) p

DV 15.654 .000 9.593 .000 5.530 .001 5.462 .003
DC 14.562 .000 10.332 .000 10.526 .000 10.101 .000
% V 5.975 .001 3.183 .038 6.708 .001 4.210 .012
nPVI-V 12.197 .000 5.903 .003 9.546 .000 6.442 .001
rPVI-C 15.240 .000 11.230 .000 7.850 .000 7.375 .001
VarcoV 17.868 .000 10.067 .000 9.231 .000 6.687 .001
VarcoC 10.092 .000 10.884 .000 7.035 .000 7.718 .000
rPVI-VC 16.046 .000 10.942 .000 7.196 .000 7.277 .001
nPVI-VC 8.574 .000 9.570 .000 5.829 .000 6.778 .001
VarcoVC 10.471 .000 11.795 .000 7.249 .000 8.736 .000
Artic. rate 81.545 .000 56.123 .000 62.222 .000 76.807 .000
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Analysis 2
VarcoVC, nPVI-VC, and rPVI-VC were added to the

rhythm metrics used in Analysis 1. Five of the 10 vari-
ables were entered into the stepwise DFA in order of im-
portance: VarcoV, VarcoVC, DV, %V, and DC. A total of
four canonical functions was constructed by the DFA,
the first three accounting for 98% of the variance. With
addition of the new metrics into the analysis, 88% of
speakers were correctly classified. Cross-validation cor-
rectly classified 77% of the speakers.

As before, the predictor variables identified in Set 1
were entered into a DFA on Set 2. VarcoV, VarcoVC, DV,
%V, and DC resulted in correct classification of 78% of
the speakers. The cross-validation procedure resulted in
correct classification of 69% of the speakers (see Table 7
for a detailed summary of classification results).

The results of Analysis 2 suggest that compositemet-
rics may be important for distinguishing among speaker

groups, with Set 1 classification improved relative to
Analysis 1. In particular, VarcoVC emerged as a reli-
able predictor variable. The Set 2 results demonstrate
the generalizability of this set of predictor variables to
new speech materials and speakers.

Analysis 3
The inclusion of articulation rate in thisDFA forSet 1

caused the model to drop four of the metrics that were
important in Analyses 1 and 2: VarcoV, DV, %V, and DC.
This eliminationwas the result of the high correlations be-
tween these metrics and articulation rate. The variables
that were then entered into the DFA included articulation
rate, VarcoC, nPVI-V, and VarcoVC. Four canonical func-
tions were created and used to classify the data, the first
three of which accounted for 98% of the total variance.
Correct classification was obtained for 79% of the orig-
inally grouped speakers and 72% of the cross-validated
speakers.

Table 6. Classification summary from analysis 1.

Speaker group

Predicted group membership

Ataxic ALS HD PD Control Total

Set 1

Original count
Ataxic 11 1 12
ALS 2 7 1 10
HD 4 4
PD 5 3 8
Control 2 7 9

Cross-validated count
Ataxic 10 2 12
ALS 2 7 1 10
HD 3 1 4
PD 5 3 8
Control 2 7 9

Set 2

Original count
Ataxic 11 1 12
ALS 1 7 8
HD 2 7 1 2 12
PD 7 1 8
Control 5 5

Cross-validated count
Ataxic 10 1 1 12
ALS 2 6 8
HD 2 7 1 2 12
PD 7 1 8
Control 1 1 3 5

Note. For Set 1, 79% of originally grouped speakers and 74% of cross-validated speakers correctly classified.
For Set 2, 82% of originally grouped speakers and 73% of cross-validated speakers correctly classified.
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A DFA was conducted on Set 2, with the predictor
variables identified with Set 1 as input. Using articu-
lation rate, VarcoC, nPVI-V, and VarcoVC, the classifi-
cation rules correctly classified 89% of the originally
grouped speakers and 82% of the cross-validated speak-
ers (see Table 8 for a summary of classification results).

In summary, classification results for both Set 1 and
Set 2 were of generally high accuracy for all analyses.
For Set 1, the best classification was obtained with the
group of variables in Analysis 2: VarcoV, VarcoVC, DV, %
V, and DC; for Set 2, the best classification derived from
the Analysis 3 group, which included articulation rate.
Together, these analyses confirm the ability of rhythm
metrics to yield distinguishable distributions among the
speaker groups in the DFA.

Misclassifications
Misclassifications (seeTables 6–8) canbe summarized

as follows: Control speakerswere rarelymisclassified, and

only asPD;PDspeakerswere onlymisclassified as control;
Ataxic speakers were misclassified as ALS (with a single
HD classification); ALS speakers were misclassified only
as ataxic; and HD speakers were misclassified as Ataxic,
ALS, and control. To determine which predictor variables
are most useful for distinguishing one dysarthric speaker
group from the rest, four additional DFAswere conducted.

Stepwise DFAs: Dysarthria-Specific
Comparisons
Analysis 4: Hypokinetic Dysarthria (PD)

In this analysis, PD was pitted against the other
dysarthric groups combined. All 10 rhythm metrics and
articulation rate were input to the DFA. The stepwise
analysis entered articulation rate, nPVI-V, and DVas pre-
dictor variables whose first canonical function resulted in
100% classification accuracy for Set 1. Given this finding,
we conducted two subsequent nonstepwise DFAs on both

Table 7. Classification summary from analysis 2.

Speaker group

Predicted group membership

Ataxic ALS HD PD Control Total

Set 1

Original count
Ataxic 12 12
ALS 2 8 10
HD 3 1 4
PD 6 2 8
Control 9 9

Cross-validated count
Ataxic 9 2 1 12
ALS 2 7 1 10
HD 3 1 4
PD 5 3 8
Control 9 9

Set 2

Original count
Ataxic 11 1 12
ALS 2 6 8
HD 2 7 1 2 12
PD 7 1 8
Control 1 4 5

Cross-validated count
Ataxic 9 2 1 12
ALS 2 6 8
HD 2 1 6 1 2 12
PD 7 1 8
Control 1 1 3 5

Note. For Set 1, 88% of originally grouped speakers and 77% of cross-validated speakers correctly classified.
For Set 2, 78% of originally grouped speakers and 69% of cross-validated speakers correctly classified.
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Sets 1 and 2, with articulation rate as the only input var-
iable. These also achieved 100% classification accuracy in
distinguishing PD from all other dysarthric speakers.

Interpretation. These results are consistent with the
perceptual characterization of the PD speech as rapid or
rushed, and this was supported by the articulation rate
values, whose means were similar to or exceeded the
control rates (see Table 5). It is believed that the reduced
excursions of the articulators secondary to basal ganglia
dysfunction in PD give rise to the perceptual experience
of rushed speech in the context of normal or supranormal
rates (Caliguiri, 1989; Weismer, 1984). It is of particular
interest that despite the reduced intelligibility, the met-
rics that captured temporal relationships among vocalic
and consonantal segments—in particular, VarcoVC—
showed relative preservation of normal rhythm, as evi-
denced by the similarity of scores to those of the control
group. This is consistentwith observations in othermotor
systems in PD, which show that themotor program for a

task is essentially intact but that it is implemented in a
scaled-down spatial domain (Berardelli, Dick, Rothwell,
Day, & Marsden, 1986; Hallett & Khoshbin, 1980).

Analysis 5: Ataxic Dysarthria (Ataxic)
Two categories of speakers were established: Ataxic

versus all other dysarthric speakers. The stepwise DFA
using all metrics plus articulation rate identified VarcoC,
rPVI-VC, andnPVI-Vas predictor variables. The function
derived from the first, and only, linear combination of
these variables resulted in 85% accurate classifications,
with 79% accuracy on cross-validation. A separate step-
wiseDFA conducted on Set 2 identified VarcoC but did so
also along with DC and %Vas predictor variables. Appli-
cation of this function resulted in 85% accurate classifi-
cation for both the original and cross-validatedmethods.
The ranking of the predictor variables in both cases
suggests that the rate-normalized consonantal interval
measure (VarcoC) was useful for distinguishing ataxic

Table 8. Classification summary from analysis 3.

Speaker group

Predicted group membership

Ataxic ALS HD PD Control Total

Set 1

Original count
Ataxic 11 1 12
ALS 3 6 1 10
HD 4 4
PD 5 3 8
Control 1 8 9

Cross-validated count
Ataxic 10 2 12
ALS 3 6 1 10
HD 1 3 4
PD 5 3 8
Control 2 7 9

Set 2

Original count
Ataxic 11 1 12
ALS 8 8
HD 2 1 9 12
PD 7 1 8
Control 5 5

Cross-validated count
Ataxic 11 1 12
ALS 1 7 8
HD 2 1 9 12
PD 7 1 8
Control 2 3 5

Note. For Set 1, 79%of originally grouped speakers and72%of cross-validated speakers correctly classified.
For Set 2, 89% of originally grouped speakers and 82% of cross-validated speakers correctly classified.
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speech from the other dysarthrias. The explanation for
this lies in Table 5, which shows that the mean VarcoC
values for this group were highly similar to those for the
control group (not included in this analysis). Thus, the
relative normality of this metric distinguished ataxic
from the other dysarthrias, much in the same way that
the relative normality of articulation rate distinguished
PD from the rest of the dysarthric groups.

Interpretation. Ataxia arising from disruptions in
cerebellar circuitry is associated with disturbances in
rhythm and movement timing and coordination. In the
speech domain, the ataxia manifests as irregularities in
production as well as in a tendency toward equal and
even scanning speech rhythm. Metrics previously held to
capture the scanning quality of ataxic connected speech
(such as nPVI-Vor nPVI-VC) did not emerge in this anal-
ysis as the primary variables for distinguishing ataxic
from the other dysarthrias (nPVI-V was the third pre-
dictor variable for Set 1 only). These “scanning”metrics
were indeed low as compared with control (see Table 5),
and the absolute values are highly similar to those
reported in previous studies that document scanning in
ataxia (Henrich et al., 2006). But these metrics did not
emerge as powerful variables because the values for the
ataxic speech were not as low as those derived from the
ALS speech, which exhibited more severe metrical scan-
ning. Also of note in Table 5 (and referencing Appen-
dix B) is that the mean values for DC, DV, and rPVI-VC
(all strongly positively correlated) were high relative to
control but were similar to the mean values for the HD
and ALS groups. Thus, at least in distinguishing these
speakers with ataxic dysarthria from those with other
dysarthria subtypes, the patterns of abnormality were
not distinctive. However, with the canonical functions
derived froma linear combination of predictor variables,
classification accuracy for ataxia was very good, particu-
larly for Analysis 3, in which only 1 ataxic speaker was
misclassified on cross-validation. This highlights the
value of an analysis that is able to combinemultiple pre-
dictor variables to attain an effective solution.

Analysis 6: Flaccid-Spastic
Dysarthria (ALS)

Two categories of speakers were established: ALS
versus all other dysarthric speakers. The stepwise DFA
using all metrics plus articulation rate identified only
VarcoV as a predictor variable. The classification func-
tion was 82% accurate in classification, both with the
original and cross-validated groupings. The stepwise
DFA conducted on Set 2 identifiedmetrics nPVI-V (highly
correlated with VarcoV; refer to Appendix B) and%V. The
function achieved 85% classification accuracy for both
the original and cross-validated groupings. It is remark-
able that the high levels of original and cross-validated

classification accuracy were identical within both Set 1
and Set 2, indicating the robustness of these correlated
variables in classification. These analyses converge in
suggesting that metrics which capture temporal var-
iation of vocalic segments are useful in distinguishing
ALS from the other dysarthric groups. Indeed, rhythm
scores for ALS showed the lowest degree of vocalic in-
terval variation, as evidenced by the low scores for rate-
normalized metrics (see Table 5; VarcoV, nPVI-V, and
also VarcoVC).

Interpretation. The mixed flaccid-spastic dysarthria
of ALS is the result of both lower and upper motor neu-
ron degeneration. Speech is slow and prolonged, and
breath groups are small due to deficits in respiratory
support and the valving challenges caused by glottal
stenosis (strained-strangled vocal quality) and impaired
velopharyngeal function. Movement velocities of articu-
lators, especially the tongue, are slow (Weismer,Yunusova,
& Westbury, 2003; Yunusova, Weismer, Westbury, &
Lindstrom, 2008). These features were borne out in the
rhythm data. The most important predictor variables
for ALS were those that captured the prolongation of
vowels (%V) and the lack of temporal distinction between
vowels produced in stressed versus unstressed syllables
(nPVI-V, VarcoV). Thus, the ALS speech was the most
syllable-by-syllable of the four dysarthria groups.

Analysis 7: Hyperkinetic Dysarthria (HD)
Two categories of speakers were established: HD

versus all other dysarthric speakers. The stepwise DFA
using all metrics plus articulation rate identified VarcoC
as the only predictor variable. The classification function
was 85% accurate in classification for both the original
and cross-validated groupings. The stepwise DFA con-
ducted on Set 2 identified VarcoVC (significantly corre-
lated with VarcoC; see Appendix B) as the only predictor
variable. Classification based on the first function was
75% accurate for both original and cross-validated group-
ings.With the highest VarcoC and VarcoVC values of any
group, these metrics captured the high variability of con-
sonantal segment durations. The same variability was
not as pronounced in the vocalic intervals. Other metrics
that captured the consonantal variability that did not
emerge in the analysis but that are represented with
highvalues includedDC, rPVI-C, rPVI-VC, andnPVI-VC.
As for ataxia andALS, articulation rate was not discrimi-
native forHD:All of these dysarthrias have reduced rates
of speech.

Interpretation.Darley and colleagues (1969) included
the perceptual symptom of “bizarreness” to characterize
thehighlyunusual soundof hypokinetic dysarthria of the
choreic type. The seemingly random bursts of vocalization
and intrusive and extraneous orofacial movements re-
sult in variable breakdown of the forward flow of speech
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(Hartelius, Carlstedt, Ytterberg,Lillvik,&Laakso, 2003).
In the present study, metrics sensitive to the high vari-
ability in the consonantal intervals (VarcoCandVarcoVC)
were important for distinguishing HD speech from that
of the other dysarthrias. Other variables that also cap-
tured this variability includedDC, rPVI-C, rPVI-VC, and
nPVI-C. It is also of note that the longer speechmaterial
of Set 1 was more useful than the Set 2 short phrases in
distinguishingHD from the other dysarthrias. Because of
the intermittentmanifestation of the choreicmovements,
we can speculate that the longer material offered more
opportunity to capture the effects of the hyperkinesia.

Discussion
The first question posed by this investigation was

whether rhythm metrics could be successful at distin-
guishing the speech of healthy control participants from
that of persons with dysarthria. Overall, there was good
success at this, with nearly 80% correct classification of
control speakers when we collapse across all of the first
three sets of analyses. A particularly impressive result
was that returned for Analysis 2 (Set 1), in which there
was 100% classification accuracy for control speakers,
even on cross-validation. The success of this analysis
may be linked to the inclusion of the new rhythm met-
rics, which were intended to be sensitive to disruptions
in the forward flow of dysarthric speech (VarcoVC was
the second strongest predictor variable in this set). Sec-
ond, andmost interestingly, we asked whether predictor
variables achieved accurate differential classification
among the dysarthrias. The majority of classification
functions reported herein were more than 80% success-
ful in classifying speakers into their appropriate group;
and the more stringent cross-validation methods were
more than 70% successful. Further insight is provided
by the clusters of variables that emerged when pitting
each dysarthria against the rest (Analyses 4–7). These
variables coincide with perceptual features and underly-
ing production constraints associated with the diagnostic
categories (Kent & Kim, 2003). Thus, to best classify an
entire group of speakers that includes control and the
dysarthrias, metrics sensitive to the particular patterns
of rhythm generated by each of the groups should be
included.

This investigation has several clinical implications.
First, the overall success in classification suggests that
rhythm metrics may provide an objective means to aug-
ment differential diagnosis. This is an exciting possi-
bility, butmore studies are needed to determinewhether
mildpresentationsaredistinguishable fromhealthyspeech
and, further, whether mild (or very severe) presentations
lend themselves to dysarthria subtype classification. The
present study can be regarded as a rather optimal data

set for classification because the speech was moderate to
severely affected, and members of each group presented
with at least some level of the cardinal perceptual fea-
tures. It is expected that, similar to perceptual evalua-
tion, the application of rhythm metrics to differential
diagnosis will have both limitations and strengths. An
important line of investigation will be to determine
whether rhythmmetrics can exceed the sensitivity and
specificity of auditory perceptual judgments across the
full range of presentation severity.

A second and perhapsmore immediately useful func-
tion of rhythm metrics is their capacity to objectively
track speech change over the course of an individual’s
disease progression, or improvements associated with
pharmacological, surgical, or behavioral interventions.
As the present study shows, the acquisition of rhythm
metrics is fairly straightforward, and only a small corpus
of speech material (e.g., five sentences) is needed. Mea-
surements of vocalic and consonantal intervals can be
operationally defined and reliably measured by those
familiar with acoustic analysis and spectrographic dis-
plays of speech. The rhythm metrics then can be easily
calculated using any spreadsheet software. The efficacy
of rhythm metrics for clinical use would be further in-
creased if the measurement process could reliably be
automated. Methods of automated alignment of the seg-
ment boundaries of transcribed speech are available and,
with further improvement and appropriatemodifications
to accommodate disordered speech,may lead to a rational,
objective, and effective clinical tool.

Third, an important practical and theoretical ques-
tion that emerges from these data concerns the ways in
which these different patterns of rhythmic disturbance
contribute to associated decrements in intelligibility. In
particular, to what extent do intelligibility deficits re-
flect a listener ’s inability to cope with degraded or mis-
leading rhythm cues, causing them to make errors in
identifying word boundaries? Although a full treatment
of this issue is beyond the scope of this article, the
co-investigation of lexical boundary errors and rhythm
metricsmay provide useful insights into a source of intel-
ligibility decrement in the dysarthrias. It may also point
toward targets for rhythm remediation by revealing how
the various patterns differentially contribute to lexical
boundary errors. For example, we can speculate that
rhythmic disturbances that obscure durational differ-
ences between stressed and unstressed syllables will
have the most deleterious effect on lexical segmentation
(at least in English). Because the PD values indicated a
relative preservation of timing patterns, we might ex-
pect to see relatively less difficulty applying a lexical seg-
mentation strategy (support for this is presented in Liss
et al., 2000, 2002). In contrast, the highly variable tim-
ing relations in HD, or the extreme scanning rhythm of
ALS, would be detrimental to its application because the
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durational differences would be more random (in HD) or
reduced (in ALS). In the latter two cases, improvements
of temporal relationships, perhaps through contrastive
stress training, would be useful to address that particu-
lar source of intelligibility decrement.

Finally, the present findings raise an interesting
question regarding the consequences of rhythm abnor-
malities in dysarthria across different language classes.
Figure 1 shows the VarcoV data for all participants in
the present study plotted as a function of %V, relative
to previously published values for British English and
Catalan Spanish (White & Mattys, 2007a). The values
to the upper left (U.K. British) are associatedwith a high
temporal stress contrast rhythmic pattern (a.k.a., “stress-
timed”); values to the lower right represent low temporal
stress contrast (a.k.a., “syllable-timed”). It is of note that
all of the dysarthric speakers in this investigation fell to
the lower right of the control speakers (U.S.English) from
this investigation, indicating measurable reductions in
temporal stress contrast. Indeed, the speakers with ALS
produced even less temporal contrast than Spanish. We
have suggested and cited evidence that this reduction in
temporal contrast is a source of intelligibility decrement
for English listeners who rely on this cue for lexical
segmentation (e.g., Liss et al., 2000). But would this be
the case to the same extent for listeners less inclined to
rely on this cue because of its lack of relevance in their own
language, suchasSpanish orFrench? It is conceivable that

the rhythm abnormalities in dysarthria—and perhaps
other aspects of speech deficit, as well—cause fundamen-
tally different challenges for listeners across languages.
Rhythm metrics provide a potentially fruitful platform
for the investigation of cross-language differences in com-
municative impairment secondary to speech production
disorders such as the dysarthrias.
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Appendix A (p. 1 of 2). Speech material for Sets 1 and 2.

Set 1
1. The supermarket chain shut down because of poor management.
2. Much more money must be donated to make this department succeed.
3. In this famous coffee shop they serve the best doughnuts in town.
4. The chairman decided to pave over the shopping center garden.
5. The standards committee met this afternoon in an open meeting.

Set 2
1. account for who could knock
2. address her meeting time
3. admit the gear beyond
4. advance but sat appeal
5. afraid beneath demand
6. amend estate approach
7. and spoke behind her sin
8. appear to wait then turn
9. assume to catch control
10. attack became concerned
11. attend the trend success
12. avoid or beat command
13. award his drain away
14. balance clamp and bottle
15. beside a sunken bat
16. bolder ground from justice
17. bush is chosen after
18. butcher in the middle
19. career despite research
20. cheap control in paper
21. commit such used advice
22. confused but roared again
23. connect the beer device
24. constant willing walker
25. cool the jar in private
26. darker painted baskets
27. define respect instead
28. distant leaking basement
29. divide across retreat
30. done with finest handle
31. had eaten junk and train
32. embark or take her sheet
33. for coke a great defeat
34. forget the joke below
35. frame her seed to answer
36. functions aim his acid
37. its harmful note abounds
38. hold a page of fortune
39. increase a grade sedate
40. indeed a tax ascent
41. kick a tad above them
42. listen final station
43. mark a single ladder
44. mate denotes a judgment
45. may the same pursued it
46. measure fame with legal
47. mistake delight for heat
48. mode campaign for budget
49. model sad and local
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50. narrow seated member
51. her owners arm the phone
52. pain can follow agents
53. perceive sustained supplies
54. pick a chain for action
55. pooling pill or cattle
56. push her equal culture
57. rampant boasting captain
58. remove and name for stake
59. resting older earring
60. rocking modern poster
61. rode the lamp for teasing
62. round and bad for carpet
63. rowing farther matters
64. seat for locking runners
65. secure but lease apart
66. signal breakfast pilot
67. sinking rather tundra
68. spackle enter broken
69. or spent sincere aside
70. stable wrist and load it
71. submit his cash report
72. support with dock and cheer
73. target keeping season
74. technique but sent result
75. thinking for the hearing
76. to sort but fear inside
77. transcend almost betrayed
78. unless escape can learn
79. unseen machines agree
80. vital seats with wonder

Appendix A (p. 2 of 2). Speech material for Sets 1 and 2.
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Appendix B. Intercorrelations of the Set 1 measurements (n = 43).

Metric 1 2 3 4 5 6 7 8 9 10 11

1. DV — .734** .600** –.450** .710** –.471** .253 –.868** .803** –.091 –.018
2. DC — .219 –.470** .984** –.452** .654** –.747** .968** .266 .345*
3. %V — –.629** .196 –.624** .076 –.514** .281 –.337* –.254
4. nPVI-V — –.441** .923** –.070 .677** –.418** .431** .294
5. rPVI-C — –.437** .631** –.738** .962** .289 .325*
6. VarcoV — .038 .753** –.412** .501** .436**
7. VarcoC — –.104 .618** .726** .816**
8. Artic. rate — –.764** .278 .214
9. rPVI-VC — .334* .372*
10. nPVI-VC — .902**
11. VarcoVC —

Note. See Table 3 for variable descriptions. Artic. = articulation.

*p < .05. **p < .01.

Appendix C. Intercorrelations of the Set 2 measurements (n = 45).

Metric 1 2 3 4 5 6 7 8 9 10 11

1. DV — .655** .554** –.031 .575** .058 .158 –.735** .879** .179 .225
2. DC — .147 –.254 .963** –.122 .565** –.731** .868** .244 .292
3. %V — –.484** .127 –.480** .096 –.377* .309* –.267 –.229
4. nPVI-V — –.306* .900** –.052 .421** –.064 .611** .536**
5. rPVI-C — –.173 .564** –.695** .800** .189 .210
6. VarcoV — .129 .416** .033 .741** .734**
7. VarcoC — .039 .346** .546** .621**
8. Artic. rate — –.740** .288 .252
9. rPVI-vc — .367* .364*
10. nPVI-vc — .903**
11. VarcoVC —

Note. See Table 3 for variable descriptions.

*p < .05. **p < .01.
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Appendix D. Eigenvalues, percent of the variance, and total variance accounted for by each canonical variable
in Analyses 1, 2, and 3 for Sets 1 and 2.

Analysis CV

Set 1 Set 2

E % Var. Cum. % E % Var Cum %

1 1 5.365 76.0 76.0 3.943 70.4 70.4
2 1.270 18.0 93.9 1.186 21.2 91.6
3 .427 6.0 100.0 .466 8.3 99.9
4 .001 .0 100.0 .005 .1 100.0

2 1 5.742 71.0 71.0 4.234 71.4 71.4
2 1.296 16.0 87.0 1.044 17.6 89.0
3 .878 10.9 97.8 .493 8.3 97.3
4 .176 2.2 100.0 .159 2.7 100.0

3 1 9.162 78.9 78.9 8.247 73.7 73.7
2 1.209 10.4 89.3 1.518 13.6 87.2
3 .758 6.5 95.9 .916 8.2 95.4
4 .479 4.1 100.0 .516 4.6 100.0

Note. CV = canonical variable; E = eigenvalue; % Var. = percent of total variance accounted for by each canonical variable; Cum. % = cumulative
percentage of variation accounted for by the canonical variables.
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